Introducing CURRENNT: the munich open-source CUDA recurrent neural network toolkit
نویسندگان
چکیده
In this article, we introduce CURRENNT, an open-source parallel implementation of deep recurrent neural networks (RNNs) supporting graphics processing units (GPUs) through NVIDIA’s Computed Unified Device Architecture (CUDA). CURRENNT supports uniand bidirectional RNNs with Long Short-Term Memory (LSTM) memory cells which overcome the vanishing gradient problem. To our knowledge, CURRENNT is the first publicly available parallel implementation of deep LSTM-RNNs. Benchmarks are given on a noisy speech recognition task from the 2013 2nd CHiME Speech Separation and Recognition Challenge, where LSTM-RNNs have been shown to deliver best performance. In the result, double digit speedups in bidirectional LSTM training are achieved with respect to a reference single-threaded CPU implementation. CURRENNT is available under the GNU General Public License from http://sourceforge.net/p/currennt.
منابع مشابه
Merlin: An Open Source Neural Network Speech Synthesis System
We introduce the Merlin speech synthesis toolkit for neural network-based speech synthesis. The system takes linguistic features as input, and employs neural networks to predict acoustic features, which are then passed to a vocoder to produce the speech waveform. Various neural network architectures are implemented, including a standard feedforward neural network, mixture density neural network...
متن کاملRNNLM - Recurrent Neural Network Language Modeling Toolkit
We present a freely available open-source toolkit for training recurrent neural network based language models. It can be easily used to improve existing speech recognition and machine translation systems. Also, it can be used as a baseline for future research of advanced language modeling techniques. In the paper, we discuss optimal parameter selection and different modes of functionality. The ...
متن کاملCued-rnnlm – an Open-source Toolkit for Efficient Training and Evaluation of Recurrent Neural Network Language Models
In recent years, recurrent neural network language models (RNNLMs) have become increasingly popular for a range of applications including speech recognition. However, the training of RNNLMs is computationally expensive, which limits the quantity of data, and size of network, that can be used. In order to fully exploit the power of RNNLMs, efficient training implementations are required. This pa...
متن کاملMultiple Time Scales Recurrent Neural Network for Complex Action Acquisition
This paper presents preliminary results of complex action learning based on a multiple time-scales recurrent neural network (MTRNN) model embodied in the iCub humanoid robot. The model was implemented as part of Aquila cognitive robotics toolkit and accelerated through the compute unified device architecture (CUDA) making use of massively parallel GPU (graphics processing unit) devices that sig...
متن کاملrwthlm - the RWTH aachen university neural network language modeling toolkit
We present a novel toolkit that implements the long short-term memory (LSTM) neural network concept for language modeling. The main goal is to provide a software which is easy to use, and which allows fast training of standard recurrent and LSTM neural network language models. The toolkit obtains state-of-the-art performance on the standard Treebank corpus. To reduce the training time, BLAS and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 16 شماره
صفحات -
تاریخ انتشار 2015